Comparison of enhanced depth imaging and high-penetration optical coherence tomography for imaging deep optic nerve head and parapapillary structures

نویسندگان

  • Atsuya Miki
  • Yasushi Ikuno
  • Yukari Jo
  • Kohji Nishida
چکیده

PURPOSE To evaluate and compare the abilities of enhanced depth imaging (EDI) and high-penetration optical coherence tomography (HP-OCT) to visualize the deep optic nerve head (ONH) and deep parapapillary structures. METHODS Horizontal and vertical optic nerve images were obtained using EDI-OCT and HP-OCT, during the same visit, from 24 eyes of 12 patients with glaucoma. Three graders, using a three-point grading system, independently graded the visibility of the deep ONH structures (prelaminar tissue surface, anterior laminar surface, posterior laminar border, and laminar pores) and deep parapapillary structures (intrascleral vessels, cerebrospinal fluid space, and parapapillary choroid). The differences in the visibility scores between the EDI-OCT and the HP-OCT images and among the image locations were analyzed statistically. The agreement in scoring among the graders also was analyzed. RESULTS The visibility of three ONH structures, the anterior laminar surface, posterior laminar border, and laminar pores, was significantly better with EDI-OCT (P = 0.0010, P < 0.0001, and P = 0.0141, respectively). In contrast, the visibility of all parapapillary structures was significantly better with HP-OCT (P < 0.0001, P = 0.0176, and P < 0.0001, respectively). The visibility scores were better in the vertical images compared with the horizontal images and were best in the temporal quadrants. The intergrader agreement was moderate for all parameters examined. CONCLUSION Both EDI-OCT and HP-OCT are useful for evaluating the deep ONH and parapapillary structures. The visibility scores of the deep ONH structures were better with EDI-OCT, in contrast to the better visibility scores of the deep parapapillary structures with HP-OCT. Both systems should be chosen depending on the target tissue to observe.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clinical Applications of Optical Coherence Tomography in Ophthalmology

Assessment of the peripapillary nerve fiber layer and macular thickness can be determined in ophthalmology using optical coherence tomography (OCT). Decreased nerve fiber layer thickness and macular ganglion cell thickness in optic nerve ischemia have been correlated with visual field loss. OCT allows deep optic nerve head evaluation which helps understand pathophysiology of diseases.  Furtherm...

متن کامل

Engineering of core/shell nanoparticles surface plasmon for increasing of light penetration depth in tissue (modeling and analysis)

Objectives: In this article, a new procedure for increasing the light penetration depth in a tissue is studied and simulated. It has been reported that the most important problem in biomedical optical imaging relates to the light penetration depth, and so this makes a dramatic restriction on its applications. In the optical imaging method, the detection of the backscattered pho...

متن کامل

Imaging of the Lamina Cribrosa using Swept-Source Optical Coherence Tomography.

The lamina cribrosa (LC) is the presumed site of axonal injury in glaucoma. Its deformation has been suggested to contribute to optic neuropathy by impeding axoplasmic flow within the optic nerve fibers, leading to apoptosis of retinal ganglion cells. To visualize the LC in vivo, optical coherence tomography (OCT) has been applied. Spectral domain (SD)-OCT, used in conjunction with recently int...

متن کامل

Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography

Volumetric imaging of the Optic Nerve Head (ONH) morphometry with Optical Coherence Tomography (OCT) requires dense sampling and relatively long acquisition times. Compressive Sampling (CS) is an emerging technique to reduce volume acquisition time with minimal image degradation by sparsely sampling the object and reconstructing the missing data in software. In this report, we demonstrated real...

متن کامل

Relationship Between Juxtapapillary Choroidal Volume and Beta-Zone Parapapillary Atrophy in Eyes With and Without Primary Open-Angle Glaucoma.

PURPOSE To evaluate whether quantity of choroidal tissue directly adjacent to the optic nerve differs between eyes with and without glaucoma and whether beta-zone parapapillary atrophy influences this relationship. DESIGN Prospective cohort study. METHODS Subjects were enrolled in a longitudinal, observational study at our institution. We studied 1 eye of 63 primary open-angle glaucoma (POA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013